Issue 45, 2010

Dispersion dominated halogen–π interactions: energies and locations of minima

Abstract

The interactions of halogen atoms with aromatic π-systems can be crucial for structural stability and ligand binding. However, many aspects of the nature and energetics of these interactions remain elusive. Therefore, we designed model systems mimicking the T-shaped complex of chloro- and bromobenzene with tyrosine as found, e.g., in serine protease-inhibitor complexes. Three dimensional potential energy surfaces (3D-PES) were calculated at a high level of theory, up to CCSD(T). On these 3D-PES the exact location of the minima and, even more important, the shape of favorable interaction regions were determined. We show that the height of the halogen atom above the tyrosine-ring is decisive, while the lateral position is of minor influence. Finally, a truncated harmonic potential is developed to modify the Amber/GAFF force field to shift the locations of the minima to the correct regions.

Graphical abstract: Dispersion dominated halogen–π interactions: energies and locations of minima

Article information

Article type
Paper
Submitted
18 May 2010
Accepted
08 Sep 2010
First published
15 Oct 2010

Phys. Chem. Chem. Phys., 2010,12, 14941-14949

Dispersion dominated halogen–π interactions: energies and locations of minima

H. G. Wallnoefer, T. Fox, K. R. Liedl and C. S. Tautermann, Phys. Chem. Chem. Phys., 2010, 12, 14941 DOI: 10.1039/C0CP00607F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements