Issue 24, 2009

Enhancement of cargo processivity by cooperating molecular motors

Abstract

Cellular cargo can be bound to cytoskeletal filaments by one or more active or passive molecular motors. Recent experiments have shown that the presence of auxiliary, nondriving motors results in an enhanced processivity of the cargo, compared to the case of a single active driving motor alone. We model the observed cooperative transport process using a stochastic model that describes the dynamics of two molecular motors, an active one that moves cargo unidirectionally along a filament track, and a passive one that acts as a tether. Analytical expressions obtained from our analysis are fit to experimental data to estimate the microscopic kinetic parameters of our model. Our analysis reveals two qualitatively distinct processivity-enhancing mechanisms: the passive tether can decrease the typical detachment rate of the active motor from the filament track or it can increase the corresponding reattachment rate. Comparing analytical results with experimental data, we can show unambiguously that in the case of kinesin transport on microtubules, a higher average run length arises mainly from the ability of the passive motor to keep the cargo close to the filament, enhancing the reattachment rate of recently detached active kinesin motors. On the other hand, in the case of myosin-driven transport along actin, the passive motor tightly tethers the cargo to the filament, suppressing the detachment rate of the active myosin.

Graphical abstract: Enhancement of cargo processivity by cooperating molecular motors

Article information

Article type
Paper
Submitted
13 Jan 2009
Accepted
01 Apr 2009
First published
11 May 2009

Phys. Chem. Chem. Phys., 2009,11, 4851-4860

Enhancement of cargo processivity by cooperating molecular motors

F. Posta, M. R. D’Orsogna and T. Chou, Phys. Chem. Chem. Phys., 2009, 11, 4851 DOI: 10.1039/B900760C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements