Issue 42, 2007

Second-harmonic generation for studying structural motion of biological molecules in real time and space

Abstract

SHG and sum-frequency generation (SFG) are surface-selective, nonlinear optical techniques whose ability to measure the average tilt angle of molecules on surfaces is well known in non-biological systems. By labeling molecules with a second-harmonic-active dye probe, SHG detection is extended to any biological molecule. The method has been used in previous work to detect biomolecules at an interface and their ligand-induced conformational changes. Here I demonstrate that SHG can be used to study structural motion quantitatively using a probe placed at a specific site (Cys-77) in adenylate kinase, a protein. The protein is also labeled non-site-specifically via amines. Labeled protein is absorbed to a surface and a baseline SH signal is measured. Upon introducing ATP, AMP or a specific inhibitor, AP5A, the baseline signal changes depending on the ligand and the labeling site. In particular, a substantial change in SH intensity is produced upon binding ATP to the amine-labeled protein, consistent with the X-ray crystal structures. In contrast, SHG polarization measurements are used to quantitatively determine that no rotation occurs at site Cys-77, in agreement with the lack of motion observed at this site in the X-ray crystal structures. A method for building a global map of conformational change in real time and space is proposed using a set of probes placed at different sites in a biomolecule. For this purpose, SH-active unnatural amino acids are attractive complements to exogenous labels.

Graphical abstract: Second-harmonic generation for studying structural motion of biological molecules in real time and space

Additions and corrections

Article information

Article type
Paper
Submitted
10 Jul 2007
Accepted
29 Aug 2007
First published
07 Sep 2007

Phys. Chem. Chem. Phys., 2007,9, 5704-5711

Second-harmonic generation for studying structural motion of biological molecules in real time and space

J. S. Salafsky, Phys. Chem. Chem. Phys., 2007, 9, 5704 DOI: 10.1039/B710505C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements