Jump to main content
Jump to site search

Issue 6, 2001
Previous Article Next Article

Bulk and surface phases of iron oxides in an oxygen and water atmosphere at low pressure

Author affiliations

Abstract

Thermodynamic stability ranges of different iron oxides were calculated as a function of the ambient oxygen or water gas phase pressure (p⩽1 bar) and temperature by use of the computer program EquiTherm. The phase diagram for Fe–H2O is almost completely determined by the O2 pressure due to the H2O dissociation equilibrium. The formation of epitaxially grown iron oxide films on platinum and ruthenium substrates agrees very well with the calculated phase diagrams. Thin films exhibit the advantage over single crystals that bulk diffusion has only limited influence on the establishment of equilibrium phases. Near the phase boundary Fe3O4–Fe2O3, surface structures are observed consisting of biphase ordered domains of FeO(111) on both oxides. They are formed due to kinetic effects in the course of the oxidation to hematite or reduction to magnetite, respectively. Annealing a Fe3O4(111) film in 5 × 10−5 mbar oxygen at 920–1000 K results in a new γ-Fe2O3(111)-like intermediate surface phase during the oxidation to α-Fe2O3(0001). A model is suggested for the growth of iron oxides and for redox processes involving iron oxides. The formation of several equilibrium surface phases is discussed.

Back to tab navigation

Publication details

The article was received on 20 Nov 2000, accepted on 19 Jan 2001 and first published on 26 Feb 2001


Article type: Paper
DOI: 10.1039/B009288F
Citation: Phys. Chem. Chem. Phys., 2001,3, 1114-1122
  •   Request permissions

    Bulk and surface phases of iron oxides in an oxygen and water atmosphere at low pressure

    G. Ketteler, W. Weiss, W. Ranke and R. Schlögl, Phys. Chem. Chem. Phys., 2001, 3, 1114
    DOI: 10.1039/B009288F

Search articles by author

Spotlight

Advertisements