Issue 9, 1999

Phase transition kinetics in polydisperse systems

Abstract

The use of moment densities for understanding phase transition kinetics in polydisperse systems is discussed. The role of size partitioning and the distinction between quenched and annealed phase diagrams is emphasised. Polydisperse Flory–Huggins theory is used as an example, and Cahn–Hilliard type equations for the local moment densities are constructed for this model via a random phase approximation. They are used to examine the initial growth rate of density fluctuations which are found to reflect the annealed and quenched spinodal lines in the phase diagram.

Article information

Article type
Paper

Phys. Chem. Chem. Phys., 1999,1, 2197-2202

Phase transition kinetics in polydisperse systems

P. B. Warren, Phys. Chem. Chem. Phys., 1999, 1, 2197 DOI: 10.1039/A809828J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements