Issue 9, 2015

Thermal expansion of nano-sized BaTiO3

Abstract

BaTiO3 (BTO) nanoparticles (NPs) with various sizes from 6 to 210 nm were synthesized by a one-step hydrothermal method. The powder X-ray diffraction (XRD) patterns, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) display the formation of highly crystalline BTO NPs with a narrow size distribution. The size effect of BTO NPs on crystal structures and thermal expansion was investigated according to refined high-temperature XRD data obtained through a full-profile Rietveld method. These results show that unit cell volume (UCV) drastically increases and tetragonality (the c/a ratio) decreases as the size of BTO NPs is reduced. The coefficients of thermal expansion (CTE) of different BTO NPs reveal that the size dependence of positive thermal expansion of BTO mainly results from the ferroelectrostriction of the tetragonal phase. Through further analysis, we find that the mixed phase of tetragonal and cubic BTO may be a core/diffused shell structure which changes with decreasing NP size. Furthermore, it is speculated that the core/shell structure or tetragonality disappears when the size of BTO NPs is reduced to about 12 nm. The value is in accordance with the obtained results through the study of the change of Raman spectra and the ratio of c/a with the size of BTO NPs as well as with the reported reasonable results in the range of 5–16 nm.

Graphical abstract: Thermal expansion of nano-sized BaTiO3

Supplementary files

Article information

Article type
Paper
Submitted
25 Nov 2014
Accepted
22 Jan 2015
First published
03 Feb 2015

CrystEngComm, 2015,17, 1944-1951

Thermal expansion of nano-sized BaTiO3

M. Han, Y. Rong, Q. Li, X. Xing and L. Kang, CrystEngComm, 2015, 17, 1944 DOI: 10.1039/C4CE02328E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements