Issue 24, 2012

Formation mechanism and magnetic properties of hollow Fe3O4 nanospheres synthesized without any surfactant

Abstract

Hollow structured magnetite spheres were fabricated by a simple solvothermal process, with the assistance of various ammonium salts, where ethylene glycol was used as the solvent and reducing agent. The results of X-ray diffraction, scanning electron microscopy and transmission electron microscopy show that the as-synthesized products are pure single-phase Fe3O4 with good crystalline state, and all the samples are hollow structures except for the S-d sample, which was obtained by the assistance of NH4HCO3. The X-ray photoelectron spectrometry manifests that the Fe3+ ions on the surface of the hollow spheres exist in the form of Fe3O4, and Mössbauer measurements reveal that the hollow spheres are similar to the stoichiometric Fe3O4. The possible formation mechanism of hollow magnetite spheres with various sizes was discussed in detail. Meanwhile magnetic properties were determined by using a vibrating sample magnetometer at room temperature. The magnetic properties investigation showed that the Fe3O4 spheres were ferromagnetic with small hysteresis loops. The values of saturation magnetization are 82.989, 78.049 and 87.417 emu g−1 for the S-a, S-b and S-c samples, which decreases with increasing particle size. This phenomenon may be caused by the content of Fe3+ on A- and B-sites of the spinel ferrite. Based on experimental results, the relationship between their microcomponents also has been studied.

Graphical abstract: Formation mechanism and magnetic properties of hollow Fe3O4 nanospheres synthesized without any surfactant

Article information

Article type
Paper
Submitted
14 Aug 2012
Accepted
14 Sep 2012
First published
19 Sep 2012

CrystEngComm, 2012,14, 8658-8663

Formation mechanism and magnetic properties of hollow Fe3O4 nanospheres synthesized without any surfactant

X. Lin, G. Ji, Y. Liu, Q. Huang, Z. Yang and Y. Du, CrystEngComm, 2012, 14, 8658 DOI: 10.1039/C2CE26296G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements