Issue 11, 2017

Orthogonal enzymatic reactions for rapid crosslinking and dynamic tuning of PEG–peptide hydrogels

Abstract

Stiffening of the extracellular matrix is a hallmark in cancer progression, embryonic development, and wound healing. To mimic this dynamic process, our work explored orthogonal enzymatic reactions capable of modulating the properties of poly(ethylene glycol) (PEG)–peptide hydrogels. A hepta-mutant bacterial transpeptidase sortase A (SrtA7M) was used to ligate two PEG–peptide macromers (i.e., PEG-YLPRTG and NH2-GGGG-PEG) into a primary hydrogel network. The hydrogels were dynamically stiffened using mushroom tyrosinase (MT), which oxidized tyrosine residues into di-tyrosine and led to increased matrix stiffness. After confirming the expression and enhanced catalytic activity of SrtA7M, we investigated the cytocompatibility of the enzymatic reaction with a mouse insulinoma cell line, MIN6. In addition, we altered peptide substrate concentrations and evaluated their influence on primary hydrogel network properties and MT-triggered stiffening. Using a pancreatic cancer cell line, COLO-357, the effect of MT-triggered stiffening on spheroid formation was investigated. We found that cell spheroids formed in hydrogels that were exposed to MT were significantly smaller than spheroids formed without MT incubation, suggesting that matrix stiffening played a crucial role in the sizes of cancer cell spheroids. Through utilizing highly specific and orthogonal enzymatic reactions, this hydrogel platform permits rapid and mild in situ cell encapsulation, as well as dynamic control of matrix stiffness for investigating the role of matrix stiffening on cell fate processes.

Graphical abstract: Orthogonal enzymatic reactions for rapid crosslinking and dynamic tuning of PEG–peptide hydrogels

Article information

Article type
Paper
Submitted
28 Jul 2017
Accepted
20 Sep 2017
First published
21 Sep 2017

Biomater. Sci., 2017,5, 2231-2240

Orthogonal enzymatic reactions for rapid crosslinking and dynamic tuning of PEG–peptide hydrogels

M. R. Arkenberg and C. Lin, Biomater. Sci., 2017, 5, 2231 DOI: 10.1039/C7BM00691H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements