Jump to main content
Jump to site search

Issue 3, 2014
Previous Article Next Article

Blending PEG-based polymers and their use in surface micro-patterning by the FIMIC method to obtain topographically smooth patterns of elasticity

Author affiliations

Abstract

We have designed and fabricated a library of polyethylene glycol (PEG)-based polymer blends, including blends of two PEG-based polymers that are liquid at room temperature where the optimisation of the blending method allows for the incorporation of higher molecular-weight PEG-based polymers which are solid at room temperature. The absence of a solvent in these blends makes them perfect candidates for use in our recently developed Fill-Molding in Capillaries (FIMIC) patterning method. As our FIMIC samples have shown to be not completely smooth (a small topography up to several nanometers has been seen previously), and this is likely to affect the cellular behaviour, we have improved our technique in order to obtain virtually smooth samples that exhibit a pattern of elasticity only. It is demonstrated that, by taking advantage of the differential swelling of the pattern components, we can level out the undesired topographic difference. In particular, by employing blends of materials, (1) the swelling degree of each component can be fine-tuned to even out any topography and (2) the use of the same blends in the sample, yet with varying cross-linker amounts, ensures the swelling degree and elasticity change without changing the surface chemistry significantly. Genuine, binary patterns of elasticity can thus be fabricated, which are a great asset to study cell migration phenomena in systematic detail.

Graphical abstract: Blending PEG-based polymers and their use in surface micro-patterning by the FIMIC method to obtain topographically smooth patterns of elasticity

Back to tab navigation

Supplementary files

Publication details

The article was received on 19 Sep 2013, accepted on 13 Nov 2013 and first published on 29 Nov 2013


Article type: Paper
DOI: 10.1039/C3BM60218D
Citation: Biomater. Sci., 2014,2, 410-418
  •   Request permissions

    Blending PEG-based polymers and their use in surface micro-patterning by the FIMIC method to obtain topographically smooth patterns of elasticity

    S. M. Kelleher, Z. Zhang, A. Löbus, C. Strehmel and M. C. Lensen, Biomater. Sci., 2014, 2, 410
    DOI: 10.1039/C3BM60218D

Search articles by author

Spotlight

Advertisements