Issue 41, 2016

Identification of mesenchymal stem cell differentiation state using dual-micropore microfluidic impedance flow cytometry

Abstract

As stem cell therapies become more common in the clinic, there is a greater need for real-time, label-free monitoring of the differentiation status of the cells. In this paper, we present a dual-micropore-based, high-throughput microfluidic electrical impedance flow cytometer for non-invasive identification of the differentiation state of mesenchymal stem cells. The mesenchymal stem cells were induced to differentiate into osteoblasts over a 21 day period. Samples of mesenchymal stem cells and osteoblasts were flowed through the device, and impedance measurements were acquired over a frequency range from 50 kHz to 10 MHz. The opacity and relative angle, which shed light on the membrane capacitance and interior dielectric properties of cells, were used as interrogation parameters to analyze collected impedance data. Specifically, identification of mesenchymal stem cells and osteoblasts in a mixed population was optimized using a combination of opacity signature at 500 kHz and relative angle at 3 MHz. Identification of both cell populations in a mixed sample was successfully achieved with an accuracy of 87%. The results show a progressive increase in the number of osteoblasts throughout the 21 day differentiation process, with 36% more mesenchymal stem cells differentiated after 14 days of induction compared to after just 7 days. The dual-micropore microfluidic impedance flow cytometer system may become an important non-invasive tool for assessing stem cell quality and differentiation stages for future regenerative medicine applications.

Graphical abstract: Identification of mesenchymal stem cell differentiation state using dual-micropore microfluidic impedance flow cytometry

Supplementary files

Article information

Article type
Paper
Submitted
12 May 2016
Accepted
29 Aug 2016
First published
01 Sep 2016

Anal. Methods, 2016,8, 7437-7444

Identification of mesenchymal stem cell differentiation state using dual-micropore microfluidic impedance flow cytometry

H. Song, J. M. Rosano, Y. Wang, C. J. Garson, B. Prabhakarpandian, K. Pant, G. J. Klarmann, A. Perantoni, L. M. Alvarez and E. Lai, Anal. Methods, 2016, 8, 7437 DOI: 10.1039/C6AY01377E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements