Issue 2, 2018

Bacteria assisted protein imprinting in sol–gel derived films

Abstract

A hierarchical imprinting strategy was used to create protein imprints in a silicate film with a high binding capacity as well as selectivity toward the imprint protein and little specificity towards other proteins. In the first part of this work, rod-shaped bacteria were used as templates to create imprints in silica films of various thicknesses to open up the silica framework and increase the surface area exposed to solution. In the second part, the protein (e.g., cytochrome c (CYC) or green fluorescent protein (GFP)) was covalently attached to the surface of Bacillus subtilis and this protein-bacteria complex served as the imprint moiety. Atomic force microscopy and scanning electron microscopy were used to image the micron-size rod-shaped bacteria imprints formed on the silica surface. Fluorescence microscopy, which was used to follow the fabrication process with GFP as the representative protein, clearly demonstrated protein imprinting, protein removal and protein rebinding as well as protein specificity. Visible absorption spectroscopy using CYC as the imprint protein demonstrated relatively fast uptake kinetics and also good specificity against other proteins including bovine serum albumin (BSA), horseradish peroxidase (HRP), glucose oxidase (GOD), and lysozyme (LYZ). Collectively this work demonstrates a new surface bio-imprinting approach that generates recognition sites for proteins and provides a viable means to increase the binding capacity of such imprinted thin films.

Graphical abstract: Bacteria assisted protein imprinting in sol–gel derived films

Article information

Article type
Paper
Submitted
11 Sep 2017
Accepted
08 Dec 2017
First published
20 Dec 2017

Analyst, 2018,143, 555-563

Bacteria assisted protein imprinting in sol–gel derived films

W. Cai, H. Li, Z. Lu and M. M. Collinson, Analyst, 2018, 143, 555 DOI: 10.1039/C7AN01509G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements