Issue 9, 2017

Local collection, reaction and analysis with theta pipette emitters

Abstract

A mobile nanofluidic device based on theta pipettes was developed for “collect-react-analyze” measurements of small volumes of a sample collected locally from biological samples. Specifically, we demonstrate execution of local reactions inside single cells and on Pseudomonas aeruginosa biofilms for targeted analysis of metabolites. Nanoliter volumes of the sample, post-reaction, were delivered to a mass spectrometer via electrospray ionization (ESI) for chemical analysis. A new strategy was developed where the additional barrel of a theta pipette was utilized both to enable chemical manipulations after sample collection and to electrospray the nanoliter sample volumes collected directly from the pipette tip. This strategy proved a robust method for ESI from nanometer sized tips without clogging or degradation of the emitter and obviated the need to coat glass pipettes with a conductive metal coating. Chemical reactions investigated include acid catalyzed degradation of oligosaccharides inside the pipette tip to increase the detection sensitivity of minor metabolites found in Allium cepa cells. Additionally, phenylboronic acid complexation of carbohydrates from single cells and liposaccharides from biofilms was also performed inside the pipette tip for selective detection of carbohydrates and liposaccharides with cis-diols.

Graphical abstract: Local collection, reaction and analysis with theta pipette emitters

Supplementary files

Article information

Article type
Paper
Submitted
19 Jan 2017
Accepted
11 Mar 2017
First published
13 Mar 2017

Analyst, 2017,142, 1512-1518

Local collection, reaction and analysis with theta pipette emitters

A. Saha-Shah, J. A. Karty and L. A. Baker, Analyst, 2017, 142, 1512 DOI: 10.1039/C7AN00109F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements