Issue 6, 2011

Pre-processing of ultraviolet resonance Raman spectra

Abstract

The application of UV excitation sources coupled with resonance Raman have the potential to offer information unavailable with the current inventory of commonly used structural techniques including X-ray, NMR and IR analysis. However, for ultraviolet resonance Raman (UVRR) spectroscopy to become a mainstream method for the determination of protein secondary structure content and monitoring protein dynamics, the application of multivariate data analysis methodologies must be made routine. Typically, the application of higher order data analysis methods requires robust pre-processing methods in order to standardize the data arrays. The application of such methods can be problematic in UVRR datasets due to spectral shifts arising from day-to-day fluctuations in the instrument response. Additionally, the non-linear increases in spectral resolution in wavenumbers (increasing spectral data points for the same spectral region) that results from increasing excitation wavelengths can make the alignment of multi-excitation datasets problematic. Last, a uniform and standardized methodology for the subtraction of the water band has also been a systematic issue for multivariate data analysis as the water band overlaps the amide I mode. Here we present a two-pronged preprocessing approach using correlation optimized warping (COW) to alleviate spectra-to-spectra and day-to-day alignment errors coupled with a method whereby the relative intensity of the water band is determined through a least-squares determination of the signal intensity between 1750 and 1900 cm−1 to make complex multi-excitation datasets more homogeneous and usable with multivariate analysis methods.

Graphical abstract: Pre-processing of ultraviolet resonance Raman spectra

Article information

Article type
Paper
Submitted
06 Oct 2010
Accepted
03 Jan 2011
First published
26 Jan 2011

Analyst, 2011,136, 1239-1247

Pre-processing of ultraviolet resonance Raman spectra

J. V. Simpson, O. Oshokoya, N. Wagner, J. Liu and R. D. JiJi, Analyst, 2011, 136, 1239 DOI: 10.1039/C0AN00774A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements