Characterizing semiflexible network structure of wormlike micelles by dynamic techniques

Abstract

Understanding the structure–property relationships of semiflexible polymer networks is essential for their rational design and application across diverse fields. While classical static structural characterizations have been widely used, dynamic investigations also provide a powerful approach to analyzing these networks across multiple hierarchical levels in both time and length scales. This study presents a comprehensive methodology to dynamically determine key structural parameters in semiflexible polymer networks, characterizing time, length, volume, and molecular weight of unit segments at their respective hierarchical levels, such as Kuhn monomers, correlation blobs, and network strands. A wormlike micellar solution of sodium dodecyl sulfate and aluminum nitrate was used as a model system representing semiflexible polymers with a large Kuhn length. By combining dynamic experimental techniques, including dynamic light scattering, macrorheology, and microrheology, crucial structural information was obtained. Integrating information derived from the characteristic parameters successfully revealed the hierarchical network structure of the wormlike micelles, with results validated against static light scattering measurements. Notably, this study effectively utilizes the complex viscoelastic modulus obtained through microrheology, which has received limited attention in the literature. This approach holds potential applicability to a wide range of semiflexible polymer networks.

Graphical abstract: Characterizing semiflexible network structure of wormlike micelles by dynamic techniques

Supplementary files

Article information

Article type
Paper
Submitted
03 Feb 2025
Accepted
01 Apr 2025
First published
08 Apr 2025

Soft Matter, 2025, Advance Article

Characterizing semiflexible network structure of wormlike micelles by dynamic techniques

H. Degaki, T. Koga and T. Narita, Soft Matter, 2025, Advance Article , DOI: 10.1039/D5SM00116A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements