Discovery of a molecular adsorbent for efficient CO2/CH4 separation using a computation-ready experimental database of porous molecular materials†
Abstract
The development and sharing of computational databases for metal–organic frameworks (MOFs) and covalent organic frameworks (COFs) have significantly accelerated the exploration and application of these materials. Recently, molecular materials have emerged as a notable subclass of porous materials, characterized by their crystallinity, modularity, and processability. Among these, macrocycles and cages stand out as representative molecules. Experimental discovery of a target molecular material from a vast possibility of structures for defined applications is generally impractical due to high experimental costs. This study presents the most extensive Computation-ready Experimental (CoRE) database of macrocycles and cages (MCD) to date, comprising 7939 structures. Using the MCD, we conducted simulations of binary CO2/CH4 competitive adsorption under conditions relevant to industrial applications. These simulations established a structure–property–function relationship, enabling the identification of materials with potential for CO2/CH4 separation. Among them, a macrocycle, NDI-Δ, exhibited promising CO2 adsorption capacity and selectivity, as confirmed by gas sorption and breakthrough experiments.
- This article is part of the themed collection: 15th Anniversary: Chemical Science Leading Investigators collection