Green and sustainable synthesis of chiral alcohols: the role of Daucus carota as a biocatalyst in organic chemistry
Abstract
Chiral alcohols are essential intermediates in pharmaceuticals, agrochemicals, and advanced materials. Conventional asymmetric reduction of ketones relies on costly metal catalysts with significant environmental impact. Biocatalysis, particularly whole-cell systems, offers a sustainable alternative, providing high regio- and stereoselectivity under mild conditions. Daucus carota (carrot) roots serve as a promising biocatalyst due to their broad substrate compatibility and natural cofactor recycling ability, reducing reliance on toxic reagents and energy-intensive processes, making them both environmentally sustainable and economically viable. This review highlights the potential of D. carota for chiral alcohol synthesis while addressing challenges such as long reaction times, high biocatalyst requirements, and substrate limitations. Ongoing research focuses on optimizing reaction conditions, testing different carrot varieties, and incorporating additives to enhance efficiency and expand applicability.