Design of degradable, intrinsically flame-retardant and high-performance tung-oil-based epoxy vitrimers

Abstract

The performance of carbon fiber-reinforced composites (CFRCs) is mainly influenced by the resin matrix. In this study, eleostearic acid was utilized as the raw material, with DOPO serving as the flame-retardant functional group, and dynamic ester bonds were introduced to construct tung oil-based flame-retardant epoxy vitrimers (DGEBA-MSPDGE), which were subsequently applied in the preparation of CFRCs. This approach was aimed to address two major challenges of CFRCs: flammability and recyclability. With DGEBA-MNA cured with commercial methyl nadic anhydride (MNA) as a control, DGEBA-MSPDGE-1 exhibited excellent mechanical properties, and achieved a tensile strength of 81.4 MPa and an elongation at break of 3.83%, which were both superior to those of DGEBA-MNA (76.1 MPa and 2.86%, respectively). DGEBA-MSPDGE attained a limiting oxygen index of 36.4% and a UL-94 V-0 rating in a vertical burning test, and demonstrated blow-off effects during evaluation. The peak heat release rate and total heat release for DGEBA-MSPDGE-1 compared to those of DGEBA-MNA were reduced by 40% and 46%, respectively, which indicate excellent flame retardancy properties. It displayed excellent chemical degradability by completely degrading within five hours under mild conditions. Notably, the recovered carbon fibers (CFs) retained their original chemical structure, mechanical properties, and surface morphology, which facilitated non-destructive recycling of CFs. Therefore, this research provides a viable strategy for fabricating high-performance, fire-safe and recyclable CFRCs.

Graphical abstract: Design of degradable, intrinsically flame-retardant and high-performance tung-oil-based epoxy vitrimers

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
13 Feb 2025
Accepted
25 Feb 2025
First published
27 Mar 2025

Polym. Chem., 2025, Advance Article

Design of degradable, intrinsically flame-retardant and high-performance tung-oil-based epoxy vitrimers

Q. Chang, K. Zhang, W. Li, Y. Wang, K. Li, Y. Wang, X. Nie and J. Chen, Polym. Chem., 2025, Advance Article , DOI: 10.1039/D5PY00141B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements