Reactive Oxygen Species-Dependent Nanomedicine Therapeutic Modalities for Gastric Cancer

Abstract

Reactive oxygen species (ROS) play a double-edged role in gastric cancer (GC). Higher levels of ROS in tumor cells compared to normal cells facilitate tumor progression. Once ROS concentrations rise rapidly to toxic levels, they cause GC cell death, which is instead beneficial for GC treatment. Based on these functions, nano-delivery systems taking the therapeutic advantages of ROS have been widely employed in tumor therapy in recent years, which overcame the drawbacks of conventional drug delivery techniques, such as non-specific systemic effects. In this review, the precise impacts of ROS on GC have been detailed, along with ROS-based nanomedicine therapeutic schemes. These strategies mainly focused on the use of excess ROS in the tumor microenvironment for controlled drug release and a substantial enhancement of ROS concentrations for tumor killing. The challenges and opportunities for the advancement of these anticancer therapies are also emphasized.

Article information

Article type
Review Article
Accepted
15 Apr 2025
First published
16 Apr 2025
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2025, Accepted Manuscript

Reactive Oxygen Species-Dependent Nanomedicine Therapeutic Modalities for Gastric Cancer

Z. Li, Y. Lu, L. Wang, L. Shi and T. Wang, Nanoscale Adv., 2025, Accepted Manuscript , DOI: 10.1039/D5NA00321K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements