Solid-state mechanochemical activation of anthracene-maleimide adducts: the influence of the polymer matrix

Abstract

The repertoire of established mechanophores has been on a steady rise over the last few years, holding the promise of generating materials capable of delivering programmable, beneficial responses upon mechanical stimulation. However, investigations are usually confined to demonstrating activation within limited and seemingly arbitrary choices of polymer matrices. In contrast, the broader applicability of the mechanophore across various types of polymer materials is rarely explored. The experimental techniques generally used to achieve mechanochemical activation are also a source of discrepancy. Ultrasonication of dilute polymer solutions is a popular method that applies extreme strain rates to isolated, solvated chains. The technique is practical and convenient, but its experimental conditions are not conducive to elucidating the activity of the same mechanophore in a bulk polymer system under tensile strain. Here, we report a comparative study on the mechanochemical behaviour of anthracene-maleimide Diels-Alder adducts in a series of polymeric materials. We embed the mechanophores either in the backbone of linear polymers or as cross-links of polymer networks. We show that the solution-phase ultrasonication efficiently activates the mechanophores, regardless of the design of the linear polymer. In contrast, mechanophore activation in bulk is highly dependent on the polymer matrix, topology, and the connectivity of the mechanophore and the matrix.

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Accepted
14 Apr 2025
First published
22 Apr 2025
This article is Open Access
Creative Commons BY-NC license

RSC Mechanochem., 2025, Accepted Manuscript

Solid-state mechanochemical activation of anthracene-maleimide adducts: the influence of the polymer matrix

J. P. Wesseler, J. R. Hemmer, C. Weder and J. A. Berrocal, RSC Mechanochem., 2025, Accepted Manuscript , DOI: 10.1039/D5MR00026B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements