Proton insertion chemistry in a phenazine-based cathode for aqueous Zn-organic batteries

Abstract

Highly active and stable cathodes play a crucial role in aqueous Zn-organic batteries, enabling them to achieve high capacity, rapid redox kinetics, and an extended lifespan. However, currently reported electrode materials for Zn-organic batteries face challenges such as low capacity and inadequate cycling stability. In this contribution, aiming to overcome the challenges above, we develop a new Zn-organic battery. In this battery, saturated ZnSO4 served as an electrolyte and its cathode is based on dipyrido [3,2-a:2′,3′-c] phenazine (DPPZ). Theoretical calculations and ex situ analyses demonstrate that the Zn//DPPZ batteries mainly undergo an H+ uptake/removal process with a highly reversible structural evolution of DPPZ. As a result, the aqueous Zn//DPPZ full cell exhibits a remarkable capacity of 94 mA h g−1 at a mass-loading of 2 mg cm−2 (achieved at 0.5 A g−1), and rapid kinetics. Moreover, the cell possesses remarkable cycling durability such that at a mass-loading of 2 mg cm−2, the cell owns a long lifespan of 8000 cycles with a current density of 5 A g−1, and even at a high mass-loading of 8 mg cm−2, it can still endure 600 cycles with a current density of 0.5 A g−1. These findings pave the way for the development of advanced organic electrodes.

Graphical abstract: Proton insertion chemistry in a phenazine-based cathode for aqueous Zn-organic batteries

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
15 Nov 2024
Accepted
07 Jan 2025
First published
08 Jan 2025
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2025, Advance Article

Proton insertion chemistry in a phenazine-based cathode for aqueous Zn-organic batteries

Y. Xiang, X. Li, C. Qiu, W. Yang, L. Liu, H. Yu, L. Zhang, L. Yan and J. Shu, Mater. Adv., 2025, Advance Article , DOI: 10.1039/D4MA01128G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements