High-throughput synthesis of multi-element alloy nanoparticles using solvothermal continuous-flow reactor

Abstract

High-throughput synthesis of multi-element alloy nanoparticles (MEA NPs) is essential for accelerating the discovery of advanced materials with complex compositions. Herein, we developed an automated continuous-flow reactor system capable of synthesising a wide variety of MEA NPs under controlled solvothermal conditions (up to 400 °C and 35 MPa). The system demonstrates a high screening throughput, capable of preparing up to 20 distinct samples in a single, automated run, with each synthesis requiring only 30 minutes. A key throughput optimising feature is the parallel process execution, whereby precursor preparation and system cleaning are performed concurrently via the reactor heating, synthesis, and cooling cycles. All washing procedures, for both the precursor preparation module and reactor unit, are fully automated, further minimising downtime. We demonstrated its versatility by successfully synthesising a wide range of MEA NPs, including high-entropy alloys, composed of various combinations of d- and p-block metals. The synthesized materials, ranging from bimetallic RuPd to ten-element CoNiCuRuRhPdInSnIrPt alloys, were all crystalline, single-phase face-centred cubic solid solutions. Furthermore, the platform enables the direct one-step synthesis of supported MEA catalysts, such as RuRhPdIrPt/CeO2. For this supported catalyst, we achieved a practical mass throughput with a theoretical production rate of 0.5 g h−1 for the MEA NPs (corresponding to 27 g h−1 for the total catalyst including the support). The final product yield was approximately 56% under the current protocol, which is designed to prevent cross-contamination by automatically discarding the initial and final portions of the product slurry. We anticipate this yield can be readily improved in a system configuration optimized for mass throughput rather than for high-throughput screening. This study presents a scalable and versatile system for high-throughput MEA NPs synthesis and offers a practical solution for bridging the gap between computational predictions and experimental materials development.

Graphical abstract: High-throughput synthesis of multi-element alloy nanoparticles using solvothermal continuous-flow reactor

Supplementary files

Article information

Article type
Paper
Submitted
20 Jun 2025
Accepted
04 Aug 2025
First published
05 Aug 2025

Faraday Discuss., 2026, Advance Article

High-throughput synthesis of multi-element alloy nanoparticles using solvothermal continuous-flow reactor

M. Mukoyoshi, K. Kusada, X. Zhou, T. Toriyama, T. Yamamoto, Y. Murakami and H. Kitagawa, Faraday Discuss., 2026, Advance Article , DOI: 10.1039/D5FD00103J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements