Analysis of antibiotic resistance genes in livestock manure and receiving environment reveals non-negligible risk from extracellular genes

Abstract

Antibiotic resistance genes (ARGs), extracellular and intracellular, collectively constitute the complete resistome within farming environments. However, a systematic analysis of extracellular ARGs (eARGs) and intracellular ARGs (iARGs) remains missing. This study characterized eARGs and iARGs in livestock manure and examined their effects on the agricultural soil receiving them. The findings indicated differences in DNA concentration and the ratios of iDNA and eDNA across various manures, with chicken manure demonstrating the highest eDNA levels (20.7–22.7%). Different ARG subtypes had distinct pollution levels in livestock manure. Generally, except for blaTEM-1 and blaOXA-1, ermC, ermB, and cfr, other ARGs were abundant in eDNA (beyond 104 copies per g DW in each sample) and iDNA (beyond 107 copies per g DW) of animal manure. The copy numbers of eARGs and iARGs differed in different manures, with swine manure having the highest, ranging from 6.08 × 103 to 4.30 × 108 and from 3.21 × 107 to 9.51 × 1010 copies per g DW, respectively. Both iARGs and eARGs were more abundant in soil when manure was applied. The impacts of the various manures varied, with chicken manure having the most significant influence. Interestingly, several eARGs were much more abundant in soil than their intracellular counterparts, highlighting the need to regulate and manage both eARGs and iARGs.

Graphical abstract: Analysis of antibiotic resistance genes in livestock manure and receiving environment reveals non-negligible risk from extracellular genes

Supplementary files

Article information

Article type
Paper
Submitted
23 Sep 2024
Accepted
02 Apr 2025
First published
03 Apr 2025

Environ. Sci.: Processes Impacts, 2025, Advance Article

Analysis of antibiotic resistance genes in livestock manure and receiving environment reveals non-negligible risk from extracellular genes

R. Xin, F. Yang, Y. Zeng, M. Zhang and K. Zhang, Environ. Sci.: Processes Impacts, 2025, Advance Article , DOI: 10.1039/D4EM00570H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements