Catalyst-Electrolyte Interface Engineering Propels Progress on Acidic CO2 Electroreduction

Abstract

Electrocatalytic carbon dioxide reduction (CO2RR) presents a viable strategy to transfer the dominant greenhouse gas, CO2, into high-value-added chemicals, supporting carbon neutrality. CO2RR in alkaline and neutral media have thrived in recent years due to their high CO2 solubility and favourable CO2 activation ability. However, critical challenges have emerged, such as carbonate formation and subsequent CO2 crossover to anodic sides, which undermine carbon efficiency and system stability. Acidic media provides an advantageous environment to prevent CO2 crossover into the anolyte but suffers from strong HER competition which is significantly more active in acidic conditions, largely reducing CO2 conversion efficiency. Research on acidic CO2RR began with some basic studies, including testing various catalysts and electrolytes and designing diverse substrate structures. With advancements in characterization technologies, it is found that acidic CO2RR is influenced not basically by composition variations in catalysts, substrates or electrolytes, but also by internal changes at the catalyst-electrolyte interface. Catalyst-electrolyte interface engineering involved electrolyte engineering, catalyst modification, and interface optimization provides many feasible solutions for acidic CO2RR to weaken HER competition. Importantly, it deepens the acidic CO2RR investigation to the exploration of catalyst electronic structures, interfacial adsorption of cations and anions, and the surface hydrophobicity in the presence electric fields. However, there are limited articles reviewing acidic CO2RR from this perspective, thus, this review aims to discussing the challenges, history, evaluation and breakthroughs of acidic CO2RR regarding catalyst-electrolyte interface engineering, providing insights for the future development of acidic CO2RR.

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Review Article
Submitted
04 Dec 2024
Accepted
27 Jan 2025
First published
28 Jan 2025

Energy Environ. Sci., 2025, Accepted Manuscript

Catalyst-Electrolyte Interface Engineering Propels Progress on Acidic CO2 Electroreduction

Y. Jiang, L. huang, C. chen, Y. Zheng and S. Qiao, Energy Environ. Sci., 2025, Accepted Manuscript , DOI: 10.1039/D4EE05715E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements