Managing the two mode outputs of triboelectric nanogenerators to reach a pulsed peak power density of 31 MW m−2†
Abstract
Triboelectric nanogenerators (TENGs) are a promising green energy technology with enormous potential applications. However, compared to commercial power devices, TENGs face two major challenges in maintaining constant operation of electronic devices: low current outputs and intermittent outputs influenced by external mechanical triggers. In this study, according to the output charge accumulation of the switch strategy, we designed a custom power management circuit (MC) tailored to the low and intermittent output of the TENG, with the aim of achieving exceptionally high and stable output. In ultrahigh output mode, the TENG-MC system can generate a pulsed current of up to 9.8 A and a peak power of up to 325 kW (P = I2R), resulting in a peak pulsed power density of 31.0 MW m−2, by precisely adjusting the capacitance and breakdown potential. The system can achieve a maximum current of up to 81.2 A with a peak current density of 7.7 kA m−2, setting a remarkable record for TENGs. In the long-lasting mode, the TENG-MC system exhibits high stability, maintaining a constant voltage of 1.7 kV with a crest factor of up to 1.005. Remarkably, just 2.5 minutes of operation of the TENG-MC system can efficiently power 464 LEDs continuously for 13 minutes, maintaining constant illumination without flickering. Finally, to demonstrate the application potential of the TENG-MC system, we have designed two experiments: a self-powered cathodic protection system that shows remarkable stability (providing 8 hours of protection after only 2.5 minutes of energy harvesting) and pest prevention that achieves nearly 100% mortality. These advances significantly increase the commercial viability of TENG technology and address the issues of low/unstable power output, particularly when harvesting irregular and discontinuous mechanical energy over long periods of time.