Structural contributions of Zn in enhancing CO2 hydrogenation to methanol over ZnxZrOy catalysts

Abstract

Single-reactor CO2 conversion to light olefins via methanol is currently obstructed by the incompatible reaction conditions for the CO2 to methanol and methanol to olefin steps. The conventional Cu/ZnO–Al2O3 CO2 hydrogenation catalysts produce excessive CO and rapidly deactivate at the high temperatures preferred for methanol to olefins with zeolite or SAPO catalysts. ZnxZrOy catalysts are a promising alternative to Cu/ZnO–Al2O3. We studied ZnxZrOy with varying Zn doping levels, using XRD, XPS, H2-TPR, CO2-TPD, N2-physisorption, DRIFT, and Raman spectroscopy, along with CO2 conversion and methanol selectivity measurements, to examine structure-performance relationships in CO2 hydrogenation to methanol. The interplay between dopant concentration, calcination temperature, and crystal structure dictates the catalyst's phase composition, which correlates with catalytic performance. The pristine ZrO2 is a mixture of tetragonal and monoclinic phases. At Zn/Zr = 0.01, the tetragonal phase is dominant, while for Zn/Zr = 0.07–0.28, the cubic phase is obtained. Above Zn/Zr = 0.28, phase separation of ZnO occurs. For CO2 hydrogenation to methanol, a Zn/Zr = 0.07–0.28 performs best. Zinc addition increases catalyst surface area, pore volume, basicity, and reducibility. XPS analysis reveals zinc enrichment near the surface and the formation of Zr–O–Zn species upon Zn incorporation into ZrO2. A clear correlation between Zn content and catalyst activity is generally absent, but this relationship becomes evident in cubic-phase materials. At least in part, the relevance of zinc doping for CO2 to methanol lies in its ability to distort the structure of zirconia, creating a cubic phase, with implications for selectivity that correlate with the adsorption of CO2 and H2.

Graphical abstract: Structural contributions of Zn in enhancing CO2 hydrogenation to methanol over ZnxZrOy catalysts

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
02 Oct 2024
Accepted
09 Dec 2024
First published
12 Dec 2024
This article is Open Access
Creative Commons BY license

Catal. Sci. Technol., 2025, Advance Article

Structural contributions of Zn in enhancing CO2 hydrogenation to methanol over ZnxZrOy catalysts

Z. Zanganeh, M. Bols, P. Yazdani, H. Poelman and M. Saeys, Catal. Sci. Technol., 2025, Advance Article , DOI: 10.1039/D4CY01175A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements