Recent advancements in membrane-free redox flow batteries

Abstract

Membrane-free redox flow batteries (RFBs) are promising energy-storage technologies that present an innovative solution to address the critical need for sustainable and efficient energy systems. This review provides a detailed examination of membrane-free RFBs, focusing on recent technological advances and design optimization. Moreover, it highlights the growing importance of membrane-free designs for achieving higher efficiency and scalability in energy-storage systems. These designs offer significant improvements in terms of electrolyte concentration, Coulombic efficiency, and flow management, underscoring the potential of these systems for advanced energy-storage solutions. We explore the utilization of immiscible electrolyte solvents and the engineering of laminar flow dynamics to achieve efficient electrolyte separation without traditional ion-exchange membranes. The article discusses metal-free and metal-phase aqueous/nonaqueous and nonaqueous/nonaqueous immiscible solvent-based RFBs; laminar flow-based RFBs; single-phase co-laminar flow batteries; liquid/solid membrane-free RFBs; and triphasic membrane-free RFBs, highlighting their unique design features and operational benefits, as well as their potential and challenges in energy-storage applications. Key parameters such as the coulombic efficiency, self-discharge, flow dynamics, and impedance are analyzed to provide a comprehensive understanding of the performance metrics critical for the development of next-generation membrane-free RFBs. We provide valuable references for developing membrane-free RFBs and highlight their significance, technological advancements, and implications for future energy-storage applications. In the context of global energy transitions, the research and development of membrane-free batteries will provide crucial technical support for achieving sustainable energy development.

Graphical abstract: Recent advancements in membrane-free redox flow batteries

Article information

Article type
Review Article
Submitted
15 Feb 2025
First published
14 May 2025
This article is Open Access
Creative Commons BY-NC license

Chem. Soc. Rev., 2025, Advance Article

Recent advancements in membrane-free redox flow batteries

X. Wang, R. K. Gautam and J. “Jimmy” Jiang, Chem. Soc. Rev., 2025, Advance Article , DOI: 10.1039/D5CS00174A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements