Self-healing behavior of superhard covalent bond materials

Abstract

In recent years, superhard covalently bonded materials have drawn a great deal of attention due to their excellent mechanical properties and potential applications in various fields. This review focuses on the self-healing behavior of these materials, outlining state-of-the-art research results. In detail, we discuss current self-healing mechanisms of self-healing materials including extrinsic healing mechanisms (such as microencapsulation, oxidative healing, shape memory, etc.) and intrinsic healing (dynamic covalent bonding, supramolecular interactions, diffusion, defect-driven processes, etc.). We also provide an overview of the progress in the self-healing behavior of superhard covalently bonded materials and the mechanisms of permanent covalent bonding healing. Additionally, we analyze the factors that influence the healing properties of these materials. Finally, the main findings and an outlook on the future directions and challenges of this emerging field are summarized in the Conclusion section.

Graphical abstract: Self-healing behavior of superhard covalent bond materials

Article information

Article type
Review Article
Submitted
24 Nov 2024
First published
24 Mar 2025
This article is Open Access
Creative Commons BY-NC license

Chem. Soc. Rev., 2025, Advance Article

Self-healing behavior of superhard covalent bond materials

K. Qiu, X. Li, Y. Li, Y. Yue and L. Guo, Chem. Soc. Rev., 2025, Advance Article , DOI: 10.1039/D4CS01182A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements