Efficacy and mechanisms of concentrated growth factor on facial nerve rehabilitation in a rabbit model

Abstract

Accelerated rehabilitation following facial nerve injury presents unique clinical challenges. This study evaluates the therapeutic effects of concentrated growth factor (CGF) on facial nerve recovery in a rabbit model and on RSC96 Schwann cells. Characterization of the CGF membrane (CGFM) revealed a three-dimensional fibrin network with embedded platelets, and representative growth factors, including TGF-β1, PDGF-BB, IGF-1, bFGF, and VEGF, were detected. In vivo, the Crush + CGFM group exhibited enhanced axon and myelin regeneration, increased Schwann cell proliferation, and improved facial nerve function compared to the Crush group. In vitro, CGF treatment significantly promoted the proliferation and migration of RSC96 cells and facilitated axon elongation in NG108-15 cells compared to controls. Mechanistically, CGF treatment led to a significant increase in PDGFRβ phosphorylation. Inhibition of this pathway with SU16f decreased Schwann cell activity and hindered overall nerve rehabilitation. These results underscore CGF's potential to accelerate nerve repair by promoting axon and myelin regeneration and enhancing Schwann cell biological activity, with the PDGFRβ pathway playing a crucial regulatory role. This study highlights CGF as a promising therapeutic strategy for improving facial nerve rehabilitation.

Graphical abstract: Efficacy and mechanisms of concentrated growth factor on facial nerve rehabilitation in a rabbit model

Supplementary files

Article information

Article type
Paper
Submitted
31 Oct 2024
Accepted
09 Jan 2025
First published
20 Jan 2025

Biomater. Sci., 2025, Advance Article

Efficacy and mechanisms of concentrated growth factor on facial nerve rehabilitation in a rabbit model

X. Yang, Z. Hou, K. Wang, J. Li, W. Shang, L. Wang and K. Song, Biomater. Sci., 2025, Advance Article , DOI: 10.1039/D4BM01454E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements