Issue 10, 2024

Fluorescent carbon dot embedded silica nanocomposites as tracers for hydrogeological investigations: a sustainable approach

Abstract

The injected tracer technique using nanoparticles has evoked a lot of research interest in hydrogeological research as it encompasses a broad spectrum of applications in water resource management. The present work deals with developing carbon dot embedded silica-based nanocomposites using a microwave-assisted co-polycondensation method. The synthesized carbon dot-embedded silica nanocomposites have been characterized for their structural and functional characteristics using UV-visible spectroscopy, photoluminescence spectroscopy (PL), lifetime analysis, Raman spectroscopy, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier Transform Infrared spectroscopy (FTIR) and X-ray Diffractometry (XRD). The results obtained showed that carbon dots having a size of less than 5 nm had been successfully embedded into the silica structure, and the nanocomposite as such shows interesting optical properties. Laboratory scale column experimental studies were further conducted to ascertain the applications of the synthesized carbon dot-embedded silica nanocomposite for hydrological studies. Experiments were performed by varying the filling materials (sand/soil) in the column during which different concentrations of the nanotracer were injected under the continuous flow of water at a constant flow rate of 5 ml min−1 followed by monitoring the detection of carbon dots for a definite time. The developed nanocomposite was found to exhibit satisfactory results in terms of the detection and recovery of carbon dots when injected as a tracer in an experimental hydrological study. About 99% of the nano tracer could be regained when ∼0.5 g of the CD-SiO2 nanotracer is injected into the column and the detection was much faster with a peak detection time of 6 minutes. The better traceability and retention of the original optical properties of the developed tracer under different experimental conditions could be attributed to the optimal size of the nanocomposite system. Thus, the current challenges faced in groundwater flow analysis such as huge time consumption/expenses can be resolved to a significant extent considering the better traceability of the developed nanotracer.

Graphical abstract: Fluorescent carbon dot embedded silica nanocomposites as tracers for hydrogeological investigations: a sustainable approach

Supplementary files

Article information

Article type
Paper
Submitted
14 May 2024
Accepted
27 Jul 2024
First published
29 Jul 2024
This article is Open Access
Creative Commons BY-NC license

Environ. Sci.: Adv., 2024,3, 1400-1412

Fluorescent carbon dot embedded silica nanocomposites as tracers for hydrogeological investigations: a sustainable approach

V. S. Smitha, P. Athulya, K. K. Jayasooryan and T. R. Resmi, Environ. Sci.: Adv., 2024, 3, 1400 DOI: 10.1039/D4VA00156G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements