Issue 10, 2024

Nanozymes: a new approach for leukemia therapy

Abstract

Leukemia is a type of clonal disorder of hematopoietic stem and progenitor cells characterized by bone marrow failure, differentiation arrest, and lineage skewing. Despite leukemia being a complex disease and it being difficult to identify a single driving force, redox homeostasis, the balance between reactive oxygen species (ROS) producers and cellular antioxidant systems, is normally impaired during leukemogenesis. In this context, the modulation of ROS in leukemia cells can be harnessed for therapeutic purposes. Nanozymes are functional nanomaterials with enzyme-like characteristics, which address the intrinsic limitations of natural enzymes and exhibit great potential in synergistic antitumor therapy. Nanozymes possess catalytic activities (e.g., peroxidase-like activity, catalase-like activity, superoxide dismutase-like activity, and oxidase-like activity) to regulate ROS levels in vitro and in vivo, making them promising for leukemia therapy. On account of the rapid development of nanozymes recently, their application potentials in leukemia therapy are gradually being explored. To highlight the achievements of nanozymes in the leukemia field, this review summarizes the recent studies of nanozymes with anti-leukemia efficacy and the underlying mechanism. In addition, the challenges and prospects of nanozyme research in leukemia therapy are discussed.

Graphical abstract: Nanozymes: a new approach for leukemia therapy

Article information

Article type
Review Article
Submitted
28 Nov 2023
Accepted
22 Jan 2024
First published
31 Jan 2024

J. Mater. Chem. B, 2024,12, 2459-2470

Nanozymes: a new approach for leukemia therapy

W. Wang, J. An, R. Zhao, X. Geng, W. Jiang, X. Yan and B. Jiang, J. Mater. Chem. B, 2024, 12, 2459 DOI: 10.1039/D3TB02819D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements