Highly boosted energy storage performance of few-layered MoS2 utilized for improved electrode fabrication: experimental and theoretical studies

Abstract

Few-layer two-dimensional (2D) molybdenum disulfide (MoS2) has great potential in designing high-performance supercapacitors due to its high theoretical specific capacity, tunable bandgap, and fascinating 2D layered structure. However, the lack of efficient synthesis methods, cost-effectiveness, and mass production of few-layered MoS2 hindered its practical applications. Moreover, a large gap between theoretical specific capacitance and the experiment comes from the traditional manufacturing approaches involving polymer binders to prepare the electrode for electrochemical testing. We report an accessible and efficient approach to liquid-phase exfoliation of bulk MoS2 into high-quality, few-layered MoS2 using the green method. We have constructed few layered MoS2 on a Ni-foam as an electrode for electrochemical analysis without any polymer binder or black carbon, which exhibits significant improvements in supercapacitor performance compared to the bulk. The highest specific capacitance achieved is 985 F g−1 at 8 A g−1. The 2D layered structure provides stable channels that facilitate K+ intercalation/desorption during charging and discharging processes, helping to prevent the deposition and accumulation of ions. Finally, theoretical calculations were performed to calculate the electronic structure, adsorption energy, diffusion barrier, and charge transfer of K intercalated and adsorbed bulk and monolayer 2H-MoS2, respectively. The calculated migration energy of the K atom diffusion on monolayer MoS2 (0.05 eV) is considerably lower than that of the bulk (0.8 eV), demonstrating a significant enhancement in electrochemical performance with reducing layer thickness.

Graphical abstract: Highly boosted energy storage performance of few-layered MoS2 utilized for improved electrode fabrication: experimental and theoretical studies

Supplementary files

Article information

Article type
Paper
Submitted
13 Mar 2024
Accepted
22 Apr 2024
First published
22 Apr 2024

J. Mater. Chem. A, 2024, Advance Article

Highly boosted energy storage performance of few-layered MoS2 utilized for improved electrode fabrication: experimental and theoretical studies

Z. M. Abdulhamid, A. C. Lokhande, A. H. Pasanaje, D. Choi, N. Singh, K. Polychronopoulou and D. H. Anjum, J. Mater. Chem. A, 2024, Advance Article , DOI: 10.1039/D4TA01713G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements