Issue 17, 2024

Ab initio investigation of tunable CO2 reduction reaction on the two dimensional ferroelectric Y2CO2

Abstract

The catalytic reduction of CO2 to value-added fuels is a promising way to eliminate greenhouse gas emissions, but the development of efficient catalysts is hampered by limiting scaling relationships between various intermediates. Recently, the use of ferroelectric materials has been proposed to overcome this, as switching the spontaneous electric polarization can alter the reactivity of the surface normal to it, allowing for the tunability of adsorption and binding strength of intermediates. In this work, we use density functional theory (DFT) calculations to investigate the photocatalytic CO2RR capabilities of a two-dimensional ferroelectric material with a solar optimal bandgap: the MXene Y2CO2. We investigated the reduction of CO2 to C1 products CO, formic acid, methanol, and methane. On an O-vacancy defected Y2CO2 surface, we find that the adsorption of CO2 is more preferable to CO on a poled up surface but less so on a poled down surface, resulting in selective adsorption of the two molecules. Second, we find that the energy of the COOH intermediate (leading to CO) is uphill on a poled up surface and downhill a poled down one, while the energy of the CHOO intermediate (leading to formic acid) is downhill on both. Finally, we demonstrate how the binding energy of all intermediates in the CO2 to CH3OH route is altered on poled up or poled down surfaces. The combination of atomically thin 2D layers, ferroelectricity, and an ideal band gap is therefore a promising route to achieving CO2 photoreduction.

Graphical abstract: Ab initio investigation of tunable CO2 reduction reaction on the two dimensional ferroelectric Y2CO2

Supplementary files

Article information

Article type
Paper
Submitted
03 Dec 2023
Accepted
06 Mar 2024
First published
07 Mar 2024

J. Mater. Chem. A, 2024,12, 10252-10259

Ab initio investigation of tunable CO2 reduction reaction on the two dimensional ferroelectric Y2CO2

M. Li and J. Young, J. Mater. Chem. A, 2024, 12, 10252 DOI: 10.1039/D3TA07470F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements