Poroviscoelastic relaxations and rate-dependent adhesion in gelatin

Abstract

Hydrogels, polymeric networks swollen with water, exhibit time/rate-dependent adhesion due to their poroviscoleastic constitution. In this study, we conducted probe-tack experiments on gelatin and investigated the influence of dwelling times and unloading rates on pull-off forces and work of adhesion. We utilized in situ contact imaging to monitor separation kinematics and interfacial crack velocities. We found that the crack velocities scaled nonlinearly with the unloading rate, in a power law with an exponent of 0.8 and were independent of dwelling time. At maximum unloading rates corresponding to subsonic interfacial crack speeds, we observed an order of magnitude enhancement in the apparent work of adhesion. The enhancement of adhesion and the crack velocities were related by a power law with an exponent of 0.39. The maximum vertical extension during unloading, a measure of crack opening, exhibited linear correlation with the enhancement of adhesion. Both correlations were in line with the rate-dependent work of fracture modeled for viscoelastic solids (e.g., Persson and Brener model). We explored the links between dwelling times corresponding to varying degrees of poroelastic diffusion and the adhesion. We found 40% additional enhancement in adhesion at the highest unloading rate. This enhancement is due to the unbalanced osmotic pressure, also known as the suction effect. The influence of dwelling times on adhesion was negligible for the interfacial cracks propagating slower than the diffusive time scales. These results identify viscoelastic relaxations as the dominant mechanism governing the rate-dependent enhancement of adhesion, and hence pave the way for tuning rate-dependent adhesion in soft multiphasic materials.

Graphical abstract: Poroviscoelastic relaxations and rate-dependent adhesion in gelatin

Supplementary files

Article information

Article type
Paper
Submitted
16 Mar 2024
Accepted
02 May 2024
First published
14 May 2024

Soft Matter, 2024, Advance Article

Poroviscoelastic relaxations and rate-dependent adhesion in gelatin

W. Lee and M. Eriten, Soft Matter, 2024, Advance Article , DOI: 10.1039/D4SM00318G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements