Advanced diesel from ethanol, a pathway to produce sustainable and high-quality drop-in biofuels

Abstract

In this work, we develop a novel technology for the transformation of ethanol into diesel via Guerbet coupling and etherification. Our strategy overcomes the limitations of previous works, namely, the low yield of diesel #2, and the complex separation network required. To overcome these limitations, we rely on the use of hydrogenolysis for the removal of esters, and the implementation of butanol recycle. Herein, we present a thorough analysis of this strategy integrating the experimental evaluation of catalysts for the involved reactions, process synthesis, technoeconomic analysis, lifecycle analysis, fuel property modelling, and characterization of the fuels produced in a diesel engine. In contrast with other catalytic strategies, in this work diesel #2 constitutes the main product (92% of the produced fuels). The diesel produced has excellent cold flow properties (cloud point ~-28օC) and a very high cetane number (~94) while satisfying flash point requirements. A technoeconomic analysis leads to a minimum fuel selling price (MFSP) between $4.6/GDE-$8.4/GDE for ethanol prices between $1.5/gal and $3.4/gal (in 2021 dollars). Depending on the carbon intensity of the ethanol used as feedstock, and the process energy consumption, we found that reductions >70% in GHG emissions are feasible in comparison with fossil diesel. The diesel fuel can become carbon negative if an ethanol feedstock with a sufficiently low carbon footprint is used along with renewable hydrogen and natural gas.

Supplementary files

Article information

Article type
Paper
Submitted
16 Jul 2024
Accepted
05 Oct 2024
First published
07 Oct 2024

Sustainable Energy Fuels, 2024, Accepted Manuscript

Advanced diesel from ethanol, a pathway to produce sustainable and high-quality drop-in biofuels

J. M. Restrepo Florez, J. E. Chavarrio, E. Canales, D. Witkowski, S. Subramanian, P. A. Cuello-Penaloza, D. Rothamer, C. T. Maravelias and G. W. Huber, Sustainable Energy Fuels, 2024, Accepted Manuscript , DOI: 10.1039/D4SE00943F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements