Issue 22, 2024

A critical review of hydrogen storage: toward the nanoconfinement of complex hydrides from the synthesis and characterization perspectives

Abstract

To meet the growing global energy demand and keep our planet healthy, more than 10 terawatts of carbon-neutral energy will be required by 2050. H2, which has an energy density of 33.33 kW h kg−1, has been identified as a renewable and clean energy carrier to meet this energy demand and as a substitute for fossil fuels. H2 storage is crucial for harnessing H2 energy to its fullest potential and realizing the H2 economy. Although compression and liquefaction are established H2 storage techniques, safety concerns, energy consumption (up to 18 and 40% of H2's LHV for compression and liquefaction, respectively), and boil-off losses of up to 3% per day in liquefaction remain the main limitations. Researchers currently are exploring safe, compact, and efficient solid-state H2 storage methods. Complex hydrides such as LiBH4, NaBH4, LiAlH4, and NaAlH4, which are formed by the coordination of complex anions such as [BH4] and [AlH4] stabilized by metal cations such as Na+, Li+, Mg2+, and Ca2+, are a class of solid-state H2 storage materials with promising storage capacities. In principle, most of them are capable of meeting the ultimate volumetric (0.05 kg H2 per L) and gravimetric (6.5 wt%) storage capacity goals set by the U.S. DoE. However, they suffer from unfavorable thermodynamics-Tdes (150–600 °C), high desorption kinetic barrier-Eades (50–275 kJ mol−1), and limited reversibility. One intriguing approach to address these limitations is nanoconfinement in suitable host materials, benefiting from the synergetic effects of nanosizing, immobilization, destabilization, and, sometimes, catalysis for scaffolds that mutually induce catalytic effects. In this review, major H2 storage techniques are briefly discussed. Developments in the nanoconfinement of complex hydrides, host materials, synthetic methods, characterizations, and advances in improving kinetics, thermodynamics, and reversibility via nanoconfinement are discussed. This paves the way for the use of hydrides in practical H2 economy technologies, and contributes to the advancement of clean energy solutions.

Graphical abstract: A critical review of hydrogen storage: toward the nanoconfinement of complex hydrides from the synthesis and characterization perspectives

Article information

Article type
Review Article
Submitted
13 Mar 2024
Accepted
25 Sep 2024
First published
01 Oct 2024

Sustainable Energy Fuels, 2024,8, 5091-5130

A critical review of hydrogen storage: toward the nanoconfinement of complex hydrides from the synthesis and characterization perspectives

A. G. Gebretatios, F. Banat and C. K. Cheng, Sustainable Energy Fuels, 2024, 8, 5091 DOI: 10.1039/D4SE00353E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements