Conformational flexibility driving charge-selective substrate translocation across a bacterial transporter

Abstract

Bacterial membrane porins facilitate the translocation of small molecules while restricting large molecules, and this mechanism remains elusive at the molecular level. Here, we investigate the selective uptake of large cyclic sugars across an unusual passive membrane transporter, CymA, comprising a charged zone and a constricting N terminus segment. Using a combination of electrical recordings, protein mutagenesis and molecular dynamics simulations, we establish substrate translocation across CymA governed by the electrostatic pore properties and conformational dynamics of the constriction segment. Notably, we show that the variation in pH of the environment resulted in reversible modulation of the substrate binding site in the pore, thereby regulating charge-selective transport of cationic, anionic and neutral cyclic sugars. The quantitative kinetics of cyclic sugar translocation across CymA obtained in electrical recordings at different pHs are comparable with molecular dynamics simulations that revealed the transport pathway, energetics and favorable affinity sites in the pore for substrate binding. We further define the molecular basis of cyclic sugar translocation and establish that the constriction segment is flexible and can reside inside or outside the pore, regulating substrate translocation distinct from the ligand-gated transport mechanism. Our study provides novel insights into energy-independent large molecular membrane transport for targeted drug design strategies.

Graphical abstract: Conformational flexibility driving charge-selective substrate translocation across a bacterial transporter

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
16 Jan 2024
Accepted
11 May 2024
First published
13 May 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY license

Chem. Sci., 2024, Advance Article

Conformational flexibility driving charge-selective substrate translocation across a bacterial transporter

D. Vikraman, B. B. Majumdar, S. SK, C. Weichbrodt, N. Fertig, M. Winterhalter, J. Mondal and K. R. Mahendran, Chem. Sci., 2024, Advance Article , DOI: 10.1039/D4SC00345D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements