Efficient and scalable synthesis of 3,4-dihydroisoquinolin-1(2H)-ones by benzylic oxidation of tetrahydroisoquinoline derivatives using cerium ammonium nitrate (CAN)

Abstract

An efficient and scalable method for the synthesis of 3,4-dihydroisoquinolin-1(2H)-ones through benzylic oxidation of tetrahydroisoquinoline derivatives using a catalytic amount of cerium ammonium nitrate (CAN) and a stoichiometric amount of NaBrO3 as oxidants was developed. The reaction is significantly influenced by the substituent groups on the phenyl ring. While electron-withdrawing groups on the phenyl ring can lower the reactivities of the substrates, electron-donating groups on the phenyl ring can dramatically promote the oxidation rate.

Graphical abstract: Efficient and scalable synthesis of 3,4-dihydroisoquinolin-1(2H)-ones by benzylic oxidation of tetrahydroisoquinoline derivatives using cerium ammonium nitrate (CAN)

Supplementary files

Article information

Article type
Paper
Submitted
26 Mar 2024
Accepted
25 Apr 2024
First published
26 Apr 2024

Org. Biomol. Chem., 2024, Advance Article

Efficient and scalable synthesis of 3,4-dihydroisoquinolin-1(2H)-ones by benzylic oxidation of tetrahydroisoquinoline derivatives using cerium ammonium nitrate (CAN)

J. Luo, Z. Li, J. He, T. Li, D. Wu, Y. Lai and H. Sun, Org. Biomol. Chem., 2024, Advance Article , DOI: 10.1039/D4OB00491D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements