Issue 47, 2024

Recent advances in MXene-based composites for piezoelectric sensors

Abstract

Piezoelectric sensors are crucial in medical, industrial, and consumer electronics applications, yet their performance and sensitivity often fall short due to the limitations in current piezoelectric materials. To address these deficiencies, significant research has been directed towards developing composite materials that enhance piezoelectric properties by integrating piezoelectric materials with various fillers. MXenes, a novel class of 2D transition metal carbides/nitrides, exhibit remarkable properties such as high electrical conductivity, mechanical strength, and chemical stability. These characteristics, along with a high surface area and hydrophilicity, make MXenes an ideal additive for preparing piezoelectric composites with improved properties. Despite existing reviews on MXenes in sensor applications, only a few have systematically explored their role in piezoelectric sensors. This review provides a comprehensive analysis of MXene-based piezoelectric sensors, examining the impact of different composites on piezoelectric properties, synthesis methods, structural designs, and application areas. While promising, challenges such as scalability, reproducibility, and environmental stability must be addressed to fully realize the potential of MXene-based composites. This comprehensive analysis highlights the advancements, opportunities for further development, and the transformative potential of MXenes in the next generation of high-performance, multifunctional piezoelectric sensors.

Graphical abstract: Recent advances in MXene-based composites for piezoelectric sensors

Article information

Article type
Review Article
Submitted
06 Aug 2024
Accepted
23 Oct 2024
First published
24 Oct 2024

Nanoscale, 2024,16, 21673-21696

Recent advances in MXene-based composites for piezoelectric sensors

L. Jin, Y. Ao, T. Xu, Y. Zou and W. Yang, Nanoscale, 2024, 16, 21673 DOI: 10.1039/D4NR03233K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements