Autonomous humidity regulation by MOF/wood composites†
Abstract
Maintaining indoor air relative humidity (R.H.) within the 40–60% range recommended by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) significantly impacts human comfort and health. However, conventional solutions like dehumidifiers and humidifiers increase energy consumption, challenging the building sector's carbon neutrality goals. Here, we present an innovative composite material comprising wood and metal–organic frameworks (MOFs) that passively regulates indoor humidity by absorbing and releasing moisture. Our universal fabrication strategy enhances wood scaffold accessibility and increases MOF loading, resulting in a significant surface area increase, surpassing previous MOF/wood composites. This MOF/wood composite exhibits remarkable water sorption capacity, autonomously maintaining indoor humidity around 45% R.H. without external energy consumption. This aligns with ASHRAE recommendations, offering indirect energy savings and promoting a health-friendly indoor environment. Furthermore, the MOF/wood composite outperforms many existing materials in mechanical strength, dimensional stability, and scalability, making it highly suitable for building applications and contributing to carbon neutrality in the building sector.