Efficient solar-driven freshwater generation through an inner hierarchical porous metal–carbon layer bridging synergistic photothermal evaporation and adsorption photodegradation†
Abstract
Solar-driven interfacial evaporation has emerged as a promising avenue for clean water production, leveraging solar energy to extract water vapor from salty and polluted water sources. However, a critical challenge remains, during the photothermal evaporation process, organic pollutants and small water-soluble molecules can transfer into distilled steam, degrading the purity of the collected water. Herein, we develop a multifunctional clean water generation system that integrates photothermal conversion, adsorptive filtration and subsequent photocatalytic purification within a unified platform. This system features an inner hierarchical porous metal–carbon layer derived from ZIF-67 carbonization, seamlessly bridging a wood carbon scaffold and BiOBr nanosheets (BiOBr@ZCW) to smoothly facilitate synergistic actions between photothermal evaporation and adsorption–photodegradation processes. This BiOBr@ZCW configuration not only minimizes thermal dissipation, facilitating a high evaporation rate of 1.67 kg m−2 h−1 and an efficiency of 85% under standard solar irradiation but also enhances the photocatalytic degradation of the rhodamine B organic pollutant with a remarkable 98.43% degradation rate within just 20 minutes. This integrated system offers a robust solution to the challenges of water purification by ensuring both high efficiency in solar steam generation and effective pollutant degradation.