Issue 8, 2024

Current and promising applications of MOF composites in the healing of diabetes wounds

Abstract

Diabetes mellitus is an exponentially growing chronic metabolic disease identified by prolonged hyperglycemia that leads to a plethora of health problems. It is well established that the skin of diabetic patients is more prone to injury, and hence, wound healing is an utmost critical restorative process for injured skin and other tissues. Diabetes patients have problems with wound healing at all stages, which ultimately results in delays in the healing process. Therefore, it is vital to find new medications or techniques to hasten the healing of wounds. Metal–organic frameworks (MOFs), an assorted class of porous hybrid materials comprising metal ions coordinated to organic ligands, can display great potential in accelerating diabetic wound healing due to their good physicochemical properties. The release of metal ions during the degradation of MOFs can promote the differentiation of fibroblasts into myofibroblasts and subsequently angiogenesis. Secondly, similar to enzyme-like active substances, they can eliminate reactive oxygen species (ROS) overproduction (secondary to the bio-load of wound bacteria), which is conducive to accelerating diabetic wound healing. Subsequently, MOFs can support the slow release of drugs (molecular or gas therapeutics) in diabetic wounds and promote wound healing by regulating pathological signaling pathways in the wound microenvironment or inhibiting the expression of inflammatory factors. In addition, the combination of photodynamic and photothermal therapies using photo-stimulated porphyrin-based MOF nanosystems has brought up a new idea for treating complicated diabetic wound microenvironments. In this review, recent advances affecting diabetic wound healing, current means of rapid diabetic wound healing, and the limitations of traditional approaches are discussed. Further, the diabetic wound healing applications of MOFs have been discussed followed by the future challenges and directions of MOF materials in diabetic wound healing.

Graphical abstract: Current and promising applications of MOF composites in the healing of diabetes wounds

Article information

Article type
Review Article
Submitted
05 Apr 2024
Accepted
16 May 2024
First published
17 May 2024

RSC Med. Chem., 2024,15, 2601-2621

Current and promising applications of MOF composites in the healing of diabetes wounds

L. Deng, Y. Qiu, Y. Zeng, J. Zou, A. Kumar, Y. Pan, A. Nezamzadeh-Ejhieh, J. Liu and X. Liu, RSC Med. Chem., 2024, 15, 2601 DOI: 10.1039/D4MD00232F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements