Surface modification of MOFs towards flame retardant polymer composites
Abstract
Metal–organic frameworks (MOFs) have gained increasing interest as a new flame retardant material due to their high porosity, wide specific surface area, and structural flexibility. MOFs can achieve improved flame retardant qualities by modifying metal ions or adding flame retardant components to their ligands. Although MOFs' organic ligands can somewhat enhance their compatibility with the polymer matrix, their agglomeration in the matrix remains unavoidable which diminishes their effectiveness. Research indicates that surface modification of MOFs can enhance interface interactions with the polymer matrix. Consequently, modifying the surface of MOFs is crucial. Here, we categorize methods for modifying the surface structure of MOFs and examine the flame-retardant effects of various modification techniques, emphasizing the development of MOFs' surface morphology and its compatibility with the polymer matrix. In addition, we discuss the economic significance and sustainability of surface-modified MOFs compared to conventional flame retardants. Finally, we also discuss the prospects and challenges associated with this. Furthermore, we hope this work will provide a timely guide for scholars in this field and inspire future research.