Converting waste PET into dimethyl terephthalate and diverse boronic esters under metal-free conditions†
Abstract
PET chemical upcycling is essential for advancing sustainable development and a circular economy, while also presenting a dependable option to produce value-added chemicals. Herein, we report a boronic acid involved EG valorization strategy for the upgradation of waste PET into DMT and diverse boronic esters under metal-free conditions without protodeboronation of boronic acids. Based on the remarkable catalytic performance of 1-ethyl-3-methylimidazolium acetate ([EMIm][OAc]) both in PET methanolysis and p-tolylboronic acid esterification, this method achieves complete PET degradation, resulting in 99% yield of DMT and 98% yield of 2-(p-tolyl)-1,3,2-dioxaborolane (PTDB). This approach not only preserves the high DMT yield in various waste PET and other polyester treatment processes, but also facilitates the transformation of EG into a variety of aryl, heterocyclic, and alkyl boronic esters. The 1H NMR and FT-IR results confirmed that the hydrogen-bonding interaction between [EMIm][OAc] and reactants (PET, EG, and MeOH) enhances both PET methanolysis and boronic acid esterification processes. This method underscores its applicability for upcycling a variety of discarded polyesters and polycarbonates. The conversion of PTDB into other valuable chemicals (phenols, amines, and biaryl compounds) further illustrates the practical utility of this approach in PET disposal.

Please wait while we load your content...