Advancing Extreme-Temperature-Tolerant Zinc-Air Batteries through Photothermal Transition Metal Sulfide Heterostructures
Abstract
The potential to produce cost-effective, high-performance bifunctional oxygen catalysts holds significant promise for the commercialization of zinc-air batteries (ZABs). In this study, photothermal electrocatalysts consisting of NiCo2S4@NiFe layered double hydroxides on a graphene oxide (NiCo2S4@NiFe LDH/N-rGO) were crafted. The NiCo2S4@NiFe LDH/N-rGO electrocatalyst displayed remarkable bifunctional activity with an impressive ΔE value of 0.636 V under the influence of photothermal effects, far exceeding most advanced systems (generally > 0.68V). At a high current density of 25 mA cm-2, the NiCo2S4@NiFe LDH/N-rGO-based ZAB exhibited an impressive cycling performance, reaching 3410 cycles and extending further to an extraordinary 8285 cycles under illuminated conditions. Moreover, when considering flexible all-solid-state ZABs, the photothermally-assisted rechargeable battery displayed outstanding attributes, including exceptional maximum power density (e.g., 151.7 mW cm-2 at 25 ℃), remarkable cycle stability (e.g., over 3480 cycles at -40 ℃), and remarkable flexibility, spanning from high temperature (60 ℃) to extremely low temperature (-40 ℃). Through operando Raman and simulation investigation, it was revealed that the photothermal effect facilitates the generation of oxyhydroxide, underscoring the beneficial impact of light on the electrocatalysis.