Self-assembled hollow CuS@AuNRs/PDA nanohybrids with synergistically enhanced photothermal efficiency†
Abstract
The design of multifunctional nanocarriers with enhanced photothermal efficiency is of great significance for the photothermal therapy of cancer. In this study, hollow CuS@gold nanorods/polydopamine (HCuS@AuNRs/PDA) nanohybrids with synergistically enhanced photothermal efficiency were prepared by electrostatic self-assembly method. The high photothermal conversion efficiency of HCuS@AuNRs (55.88%) is attributed to the interfacial electron transfer between CuS and AuNRs, as well as the increase in free charge carrier concentration. The excellent adhesion performance and strong negative charge of PDA ensure a high doxorubicin hydrochloride (DOX) loading efficiency of 96.08% for HCuS@AuNRs/PDA. In addition, HCuS@AuNRs/PDA reveals outstanding NIR/pH dual-responsive drug release properties owing to the weakened interaction between PDA and DOX in acidic media and the distinct NIR responsiveness of HCuS@AuNRs. In vitro cell viability results confirm that HCuS@AuNRs/PDA could efficiently kill tumor cells under the dual effect of acidic media and NIR laser. This study presents a novel nanocarrier with synergistically enhanced NIR photothermal responsiveness and high drug loading capacity, which provides a versatile platform in intelligent drug release and photothermal therapy.