Radical qubits photo-generated in acene-based metal–organic frameworks†
Abstract
A series of metal–organic frameworks (MOFs) assembled with diazatetracene (DAT)-based linkers were synthesized and characterized. Despite different chromophore orientations and spacings, photoinduced persistent radicals were generated in all the MOFs, and their spin–lattice relaxation time (T1) and spin–spin relaxation time (T2) were found to be relatively long even at room temperature. The generality of long T1 and T2 values of photogenerated radicals in the chromophore-assembled MOFs provides a new platform towards quantum sensing applications.