ArcaNN: automated enhanced sampling generation of training sets for chemically reactive machine learning interatomic potentials

Abstract

The emergence of artificial intelligence is profoundly impacting computational chemistry, particularly through machine-learning interatomic potentials (MLIPs). Unlike traditional potential energy surface representations, MLIPs surpass the conventional computational scaling limitations by offering an effective combination of accuracy and efficiency for calculating atomic energies and forces to be used in molecular simulations. These MLIPs have significantly enhanced molecular simulations across various applications, including large-scale simulations of materials, interfaces, chemical reactions, and beyond. Despite these advances, the construction of training datasets — a critical component for the accuracy of MLIPs — has not received proportional attention, especially in the context of chemical reactivity, which depends on rare barrier-crossing events that are not easily included in the datasets. Here we address this gap by introducing ArcaNN, a comprehensive framework designed for generating training datasets for reactive MLIPs. ArcaNN employs a concurrent learning approach combined with advanced sampling techniques to ensure an accurate representation of high-energy geometries. The framework integrates automated processes for iterative training, exploration, new configuration selection, and energy and force labeling, all while ensuring reproducibility and documentation. We demonstrate ArcaNN's capabilities through two paradigm reactions: a nucleophilic substitution and a Diels-Alder reaction. These examples showcase its effectiveness, the uniformly low error of the resulting MLIP everywhere along the chemical reaction coordinate, and its potential for broad applications in reactive molecular dynamics. Finally, we provide guidelines for assessing the quality of MLIPs in reactive systems.

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
30 Jun 2024
Accepted
21 Oct 2024
First published
30 Oct 2024
This article is Open Access
Creative Commons BY-NC license

Digital Discovery, 2024, Accepted Manuscript

ArcaNN: automated enhanced sampling generation of training sets for chemically reactive machine learning interatomic potentials

R. David, M. de la Puente, A. Gomez, O. Anton, G. Stirnemann and D. Laage, Digital Discovery, 2024, Accepted Manuscript , DOI: 10.1039/D4DD00209A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements