Hybrid-LLM-GNN: Integrating Large Language Models and Graph Neural Networks for Enhanced Materials Property Prediction

Abstract

Graph-centric learning has attracted significant interest in materials informatics. Accordingly, a family of graph-based machine learning models, primarily utilizing Graph Neural Networks (GNN), has been developed to provide accurate prediction of material properties. In recent years, Large Language Models (LLM) have revolutionized existing scientific workflows that process text representations, thanks to their exceptional ability to utilize extensive common knowledge for understanding semantics. With the help of automated text representation tools, fine-tuned LLMs have demonstrated competitive prediction accuracy as standalone predictors. In this paper, we propose to integrate the insights from GNNs and LLMs to enhance both prediction accuracy and model interpretability. Inspired by the feature-extraction-based transfer learning study for the GNN model, we introduce a novel framework that extracts and combines GNN and LLM embeddings to predict material properties. In this study, we employed ALIGNN as the GNN model and utilized BERT and MatBERT as the LLM model. We evaluated the proposed framework in cross-property scenarios using 7 properties. We find that the combined feature extraction approach using GNN and LLM outperforms the GNN-only approach in the majority of the cases with up to 25% improvement in accuracy. We conducted model explanation analysis through text erasure to interpret the model predictions by examining the contribution of different parts of the text representation.

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
29 Jun 2024
Accepted
26 Nov 2024
First published
18 Dec 2024
This article is Open Access
Creative Commons BY-NC license

Digital Discovery, 2024, Accepted Manuscript

Hybrid-LLM-GNN: Integrating Large Language Models and Graph Neural Networks for Enhanced Materials Property Prediction

Y. Li, V. Gupta, M. N. T. Kilic, K. Choudhary, D. Wines, W. Liao, A. N. Choudhary and A. Agrawal, Digital Discovery, 2024, Accepted Manuscript , DOI: 10.1039/D4DD00199K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements