OM-Diff: inverse-design of organometallic catalysts with guided equivariant denoising diffusion

Abstract

Organometallic complexes are ubiquitous in numerous technological applications, and in particular in homogeneous catalysis. Optimization of such complexes for specific applications is challenging due to the large variety of possible metal–ligand combinations and ligand–ligand interactions. Here we present OM-Diff, an inverse-design framework based on a diffusion generative model for in silico design of such complexes. Due to the importance of the spatial structure of a catalyst, the model operates on all-atom (including H) representations in 3D space. To handle the symmetries inherent to that data representation, OM-Diff combines an equivariant diffusion model with an equivariant property predictor. The diffusion model generates ligands conditioned on a specified metal-center, while the property predictor guides the generation towards novel complexes with desired properties. We demonstrate the potential of OM-Diff by designing optimized catalysts for a family of cross-coupling reactions, and validating a selection of novel proposed compounds with DFT calculations.

Graphical abstract: OM-Diff: inverse-design of organometallic catalysts with guided equivariant denoising diffusion

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
10 Apr 2024
Accepted
19 Jul 2024
First published
23 Jul 2024
This article is Open Access
Creative Commons BY-NC license

Digital Discovery, 2024, Advance Article

OM-Diff: inverse-design of organometallic catalysts with guided equivariant denoising diffusion

F. Cornet, B. Benediktsson, B. Hastrup, M. N. Schmidt and A. Bhowmik, Digital Discovery, 2024, Advance Article , DOI: 10.1039/D4DD00099D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements