Issue 46, 2024

Flower-like MoS2 microspheres highly dispersed on CoFe2O4/MIL-101(Fe) metal organic framework: a recoverable magnetic catalyst for the reduction of toxic nitroaromatics in water

Abstract

In this study, we report on the synthesis and characterization of novel magnetic MoS2/CoFe2O4/MIL101-(Fe) nanocomposite catalysts designed for the efficient reduction of toxic nitroaromatic compounds, such as nitrophenols and nitroanilines, to their corresponding amines at ambient temperature. The nanocomposites were engineered by integrating metal–organic frameworks (MIL101-(Fe)), flower-like MoS2 microspheres, and CoFe2O4 nanocrystals using a hydrothermal method. The structural and physicochemical properties of the nanocomposites were thoroughly investigated using a suite of analytical techniques, including XRD, FT-IR, FE-SEM, EDX, VSM, BET surface area analysis, and zeta potential measurement. The results demonstrate that the MoS2/CoFe2O4/MIL-101(Fe) nanocomposite exhibits high catalytic activity in the reduction of 4-nitrophenol (4-NP), 2-nitrophenol (2-NP), 2-nitroaniline (2-NA), and 4-nitroaniline (4-NA) to their respective amine derivatives. The conversion rates are notably high, with pseudo-first-order rate constants of 0.386, 0.086, 0.064, and 0.117 min−1, respectively. Specifically, the complete conversion of these pollutants was achieved within 18–21 minutes, demonstrating the exceptional efficiency of the nanocomposite. Furthermore, the study explored the influence of catalyst dosage and reducing agent concentration on the reduction process's effectiveness. Notably, the magnetic nature of the nanocomposite facilitates its facile separation from the reaction mixture using an external magnet, significantly simplifying its recovery and reuse.

Graphical abstract: Flower-like MoS2 microspheres highly dispersed on CoFe2O4/MIL-101(Fe) metal organic framework: a recoverable magnetic catalyst for the reduction of toxic nitroaromatics in water

Article information

Article type
Paper
Submitted
05 Sep 2024
Accepted
28 Oct 2024
First published
28 Oct 2024

CrystEngComm, 2024,26, 6591-6607

Flower-like MoS2 microspheres highly dispersed on CoFe2O4/MIL-101(Fe) metal organic framework: a recoverable magnetic catalyst for the reduction of toxic nitroaromatics in water

M. Moradi-Beiranvand, S. Farhadi, A. Zabardasti and F. Mahmoudi, CrystEngComm, 2024, 26, 6591 DOI: 10.1039/D4CE00896K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements